Radar Operator

LOS ANGELES COUNTY SHERIFF'S DEPARTMENT

R.A.D.A.R. OPERATOR COURSE (1820-23300)

- I. Speed and Enforcement
 - A. Speed in relation to traffic safety
 - 1. Relationship between speed and stopping distances.
 - 2. Relationship between speed and the severity of injuries sustained.
 - 3. Correlation between speed and the probability of having a collision.
 - B. Speed Enforcement
 - 1. The benefits of an effective speed enforcement program.
 - 2. Types of speed offenses.
 - 3.
- II. History and theory of police traffic radar
 - A. Doppler principle
 - Founder Christian Johann Doppler
 - 2. Definition
 - 3. Based on sound waves
 - 4. Examples
 - B. R.A.D.A.R.
 - 1. Acronym
 - Radio waves
 - Detects relative motion
 - 4. Band identification (S,X,K,K_a)
 - C. Radio waves
 - 1. Frequency
 - 2. Wave length
 - 3. Travel at the speed of light
 - D. Doppler principle

Printed: 11/23/2024 (WEB)

1. The difference between the transmitted and returned frequency

- 2. Caused by the relative motion of an object
- 3. Examples
- E. Beam length is infinite unless:
 - 1. Reflected
 - 2. Refracted
 - 3. Absorbed
- I. Stationary radar operation
 - A. Radar beam
 - 1. Shape and characteristics
 - 2. Main beam
 - 3. Beam axis
 - 4. Zone of influence
 - 5. Side lobes
 - 6. Beam width
 - 1. Beam range
 - 2. Antenna position
 - B. Cosine angle
 - 1. Define
 - 2. Effect
 - 3. Cosine error equation
 - 4. Calculations
 - C. Components
 - 1. Antenna(s)
 - 2. Box (counting unit)
 - 3. Current (power source)
 - D. Installation

- 1. Cable connections
- 2. Power up unit last
- 3. Unit should be turned off
- 4. Location in vehicle
- 5. Air bag caution

- E. Testing
 - 1. Internal circuitry test
 - 2. Light segment test
 - 3. External test (tuning fork)
 - 4. When to test radar device
- F. Audio Doppler
 - 1. Significance of audio Doppler
 - 2. Pitch
 - 3. Clarity
 - 4. Volume level
 - 5. Unfiltered signal
 - 6. Consistent with target window
- G. Features / modes
 - 1. Stationary mode
 - 2. Target window
 - 3. Switching between front and rear antennas
 - 4. Anti-detection switch / hold button
 - 5. Lock button / lock window
- H. Circuitry diagram
 - 1. Transmitted frequency
 - 2. Received frequency
 - 3. Mixer diode
 - 4. Filter
 - 5. Time base counter
 - 6. Verifiers
 - 7. Target window readout
- A. Tracking history
- II. Moving radar operation
 - A. Radar beam

- 1. Shape and characteristics
- 2. Main beam
- 3. Beam axis
- 4. Zone of influence
- 5. Side lobes
- 6. Beam width
- 7. Beam range
- 8. Antenna position

- 9. Basic moving radar equation
- 10. Moving radar opposite direction
- B. Cosine angle
 - 1. Define
 - 2. Effect
 - 3. Moving radar cosine error formula
 - 4. Calulations
- C. Components
 - 1. Antenna(s)
 - 2. Box (counting unit)
 - 3. Current (power source
- D. Installation
 - 1. Cable connections
 - 2. Unit should be turned off
 - 3. Location / position in vehicle
 - 4. Power up unit last
- E. Testing
 - 1. Internal circuitry test
 - 2. Light segment test
 - 3. External test (tuning forks)
 - 4. When to test radar device
- F. Audio Doppler
 - 1. Significance of audio Doppler
 - 2. Pitch
 - 3. Clarity
 - 4. Volume level
 - 5. Unfiltered signal
 - 6. Consistent with Target window
- G. Features / modes
 - 1. Moving mode
 - 2. Target window
 - 3. Patrol window
 - 4. Anti-detection switch / hold button
 - 5. Lock button / lock window
 - 6. Switching between front and rear antennas
 - 1. Same direction

2. Faster / slower

- B. Circuitry diagram
 - 1. Transmitted frequency
 - 2. Received frequency
 - Mixer diode
 - 4. High pass filter
 - 5. Low pass filter
 - 6. Time base counter
 - 7. Verifiers
 - 8. Patrol window readout
 - 9. Subtraction of low Doppler from high Doppler
 - 10. Target window readout
- C. Double cosine effect
 - 1. Cause
 - 2. Effect
 - 3. Low Doppler
 - 4. High Doppler
 - 5. Moving radar double cosine error equation
 - Calculations
 - 7. Detection / elimination
- D. Shadowing effect
 - 1. Cause
 - Effect
 - 3. Low Doppler
 - 4. High Doppler
 - 5. Moving radar shadowing error equation
 - 6. Calculations
 - 7. Detection / elimination
- E. Moving radar same direction
 - 1. Add or subtract relative motion
 - 2. Target faster mode
 - 3. Target slower mode
- F. Tracking history
- I. Radar effects
 - A. External mechanical interference (EMI)
 - 1. Caused by moving objects
 - 2. Avoidance / elimination

- B. Random radio frequency interference (RFI)
 - 1. Internal interference
 - External interference
 - 3. Avoidance / elimination

- A. Harmonic signal interference
 - 1. A multiple of a base frequency
 - 2. Causes
 - 3. Avoidance / elimination
- B. Own speed capture effect
 - 1. Applies only to moving radar mode
 - 2. Simultaneous display
 - 3. Caused by multiple reflections
 - 4. Avoidance / elimination
- C. Pulsating signal amplitude effect
 - 1. Applies only to moving radar mode
 - 2. Caused by irregular surfaces
 - 3. Avoidance / elimination
- D. Feedback / scanning
 - 1. Possible only with two piece equipment
 - 2. Caused by improper installation or use
 - 3. Avoidance / elimination
- E. Audio effect

- 1. Caused by extremely loud radio
- 2. Avoidance / elimination
- F. Antenna vibration effect
 - 1. Caused by movement of antenna
 - 2. Avoidance / elimination
- G. Dented antenna horn effect
 - 1. Causes a distorted beam
 - 2. Avoidance / elimination
- H. Windshield obstruction effect

- 1. Reduced range
- 2. Distorted signal
- 3. Avoidance / elimination
- A. Beam reflection effect
 - 1. Caused by reflective surface
 - 2. Reads speeds from opposite direction
 - 3. Avoidance / elimination
- J. Weather effects
 - 1. Rain or snow reduces range
 - 2. Low Doppler pick up difficult
 - 3. Avoidance / elimination
- K. Heat build-up effect
 - 1. Causes component values to change
 - 2. Causes circuitry damage
 - 3. Avoidance / elimination
- AX. Power surge effect
 - 1. Occurs when power is first turned on
 - 2. Avoidance / elimination
 - A. Automatic gain control
 - 1. Increases sensitivity
 - 2. Avoidance / elimination
 - B. Panning effect
 - 1. Caused by sweeping motion of antenna
 - 2. Avoidance / elimination
 - C. Batching effect
 - 1. Caused by a rapid change in the patrol vehicle speed
 - 2. Avoidance / elimination
 - D. Multi-path signal effect
 - 1. Caused by a reflected signal
 - 2. Avoidance / elimination
- I. Legal aspects of speed enforcement
 - A. Court decisions

Printed: 11/23/2024 (WEB)

National case law

- 2. California case law
- B. Federal regulations related to radar
 - 1. Federal Communications Commission (FCC) license not required by operator
 - 2. Nation Highway Traffic Safety Administration (NHSTA) set minimum standards for radar training
 - 3. Radar must be accepted type approved by the International Association of Chiefs of Police (IACP)
- I. Vehicle code law
 - A. Speed offenses
 - 1. Section 22348
 - Section 22349
 - 3. Section 22350
 - Section 22356
 - 5. Section 22400
 - Section 22406
 - 7. Section 22406.1
 - B. Speed traps
 - 1. Speed trap prohibition-Section 40801 C.V.C.
 - 2. Speed trap defined-Section 40802 C.V.C.
 - 3. Speed trap evidence-Section 40803 C.V.C.
 - C. Speed surveys
 - Defined by California Vehicle Code- Section 627 C.V.C.
 - 2. Criteria for determining speed limits in surveys
 - 3. State Traffic Manual sets guidelines
 - 4. Define 85th percentile / critical speed
 - 1. Discuss when speed surveys are required
 - 2. Prima facie speed limits- Section 22352 C.V.C.
 - 3. Discuss who conducts speed surveys
 - B. Radar detectors
 - 1. Radio receivers
 - 2. Potential effectiveness
 - Defeat of detectors
 - State laws restricting detectors
 - C. Radar jammers

Printed: 11/23/2024 (WEB)

Radio transmitter

- 2. Federal Communications Commission (FCC) regulations
- State law
- 4. Detection of radar jammers
- 5. Law enforcement response to potential violators
- I. Radar evidence
 - A. Subpoena duces tecum
 - 1. Define
 - 2. Application to radar
 - B. Documents
 - 1. Certification of operator
 - 2. Vehicle speedometer calibration
 - Vehicle maintenance record
 - 4. Departmental FCC licensing for radar devices
 - 5. Radar operator's manual
 - 6. Radar certification
 - 7. Tuning fork certification
 - 8. Radar maintenance record
 - 9. Officer's daily activity log
- I. Practical exercises and testing
 - A. Introduction
 - 1. Safety rules
 - 2. Testing procedures
 - 3. Supervise speed estimate practice and testing
 - 4. Review of project work exercises
 - B. Speed estimate practice
 - 1. Stationary
 - 2. Moving
 - C. Speed estimate testing
 - Stationary
 - 2. Moving
- I. Courtroom testimony

- A. Techniques of effective courtroom testimony
 - 1. Advance preparation

- 1. Proper dress
- 2. Proper demeanor
- B. Considerations for radar case examination
 - 1. Officer's qualifications
 - 2. Knowledge of related California vehicle code law
 - 3. Knowledge of equipment
 - 4. Knowledge of principles
 - 5. Knowledge of beam width and range
 - 6. Knowledge of radar effects
 - 7. Application of tracking history
 - 8. Target determination
- I. Written examination

- A. Multiple choice
- B. Calculations